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In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 x 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.

1. Introduction

Discovering new high-value knowledge, such as making a novel scientific discovery or devel-
oping a commercially valuable algorithm, generally requires a prolonged process of ideation,
exploration, backtracking on unpromising hypotheses, experimentation, and validation.
There has been much recent interest in using large language models (LLMs) to automate
significant parts of this process. Hopes of success here are driven by the breathtaking power of
recent LLMs [32, 76], which can enhance their capabilities using test-time compute, and the
rise of agents that combine language generation and action [88, 114]. These advances have
improved performance across a range of established benchmarks and accelerated discovery-
oriented tasks like hypothesis generation [34] and experiment design [7, 43]. However,
getting LLM pipelines all the way to making entirely new scientific or practical discoveries
remains challenging.

In this white paper, we present an LLM code superoptimization agent, called AlphaEvolve,
that takes on this challenge using a combination of evolutionary computation and LLM-based
code generation. AlphaEvolve focuses on the broad spectrum of scientific and engineering
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discovery problems in which the candidates of discovery can be automatically evaluated. It
represents the candidates (for example, new mathematical objects or practical heuristics) as
algorithms and uses a set of LLMs to generate, critique, and evolve a pool of such algorithms.
The LLM-directed evolution process is grounded using code execution and automatic evalua-
tion. This evaluation mechanism allows AlphaEvolve to avoid any incorrect suggestions from
the base LLM [44].

The evolutionary process in AlphaEvolve leverages modern LLMs’ ability to respond to
feedback, enabling the discovery of candidates that are substantially different from the initial
candidate pool in syntax and function. It is applicable both to problems where discovering new
algorithms is the intrinsic goal, as well as to the broad range of problems where the solution
of interest is not an algorithm itself but an algorithm can describe how that solution is to be
constructed or found. In the latter case, discovering the algorithm is only an instrumental
goal, but it turns out to be a surprisingly effective strategy compared to searching for the
solution directly [83].

The idea of combining evolutionary methods with coding LLMs has been previously ex-
plored in various specialized settings. In particular, AlphaEvolve is a substantial enhancement
of FunSearch [83] (see Table 1), which used LLM-guided evolution to discover heuristics in
order to construct novel mathematical objects or to drive the operation of online algorithms.
Also, related approaches have been used in tasks such as discovering policies for simulated
robots [57], symbolic regression [35, 89], and the synthesis of heuristic functions for combi-
natorial optimization [63]. In contrast to these systems, AlphaEvolve leverages state-of-the-art
(SOTA) LLMs to evolve large pieces of code that implement complex algorithms spanning
multiple functions and components. As a result, it is able to go significantly beyond its
predecessors in scale and generality.

FunSearch [83] AlphaFEvolve

evolves single function evolves entire code file

evolves up to 10-20 lines of code evolves up to hundreds of lines of code

evolves code in Python evolves any language

needs fast evaluation (< 20min on 1 CPU) can evaluate for hours, in parallel, on accelerators
millions of LLM samples used thousands of LLM samples suffice

small LLMs used; no benefit from larger benefits from SOTA LLMs
minimal context (only previous solutions) rich context and feedback in prompts
optimizes single metric can simultaneously optimize multiple metrics

Table 1 | Capabilities and typical behaviours of AlphaEvolve and our previous agent.

While the use of an automated evaluation metric offers AlphaEvolve a key advantage, it
is also a limitation—in particular, it puts tasks that require manual experimentation out of
our scope. Because problems in mathematics, computer science, and system optimization
typically permit automated evaluation metrics, our efforts on AlphaEvolve focus on these
domains. Specifically, we use AlphaEvolve to make progress on several well-known open
problems in algorithm design and constructive mathematics, as well as the optimization of
critical layers in the large-scale computation stacks at Google.
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Within algorithm design, we consider the fundamental problem of discovering fast
algorithms for multiplying matrices, a problem to which a more specialized Al approach had
been applied previously [26]. Despite being general-purpose, AlphaEvolve goes beyond [26],
improving the SOTA for 14 matrix multiplication algorithms; notably, for 4 x 4 matrices,
AlphaEvolve improves Strassen (1969)’s algorithm by discovering an algorithm using 48
multiplications to multiply 4 x 4 complex-valued matrices.?

In mathematics, we consider a broad range of open problems on which one can make
progress by discovering constructions (objects) with better properties than all previously
known constructions, according to given mathematical definitions. We apply AlphaEvolve to a
large number (over 50) of such problems and match the best known constructions on ~75%
of them (in many cases these constructions are likely to already be optimal). On ~20% of the
problems, AlphaEvolve surpasses the SOTA and discovers new, provably better constructions.
This includes an improvement on the Minimum Overlap Problem set by Erdés [25] and an
improved construction on the Kissing Numbers problem in 11 dimensions [8, 31].

Finally, we use AlphaEvolve in four engineering problems spanning different layers of
Google’s compute stack: discovering scheduling heuristics for Google’s cluster management
system, optimizing matrix-multiplication kernels used to train LLMs, optimizing arithmetic
circuits used within TPUs, and optimizing the runtime of attention in Transformers. Because
these components are run repeatedly over a long period of time, any improvements are
highly valuable.
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high-level overview of AlphaEvolve is shown

in Figure 1, and Figure 2 gives an expanded
view. Figure 1 | AlphaEvolve high-level overview.

2.1. Task specification

Evaluation. Since AlphaEvolve tackles problems with machine-gradeable solutions, the user
must provide a mechanism for automatically assessing generated solutions. This mechanism
takes the form of a function h mapping a solution to a set of scalar evaluation metrics. By
convention, these metrics are maximized. In our current setup, h is typically implemented

2These discovered algorithms as well as our other new mathematical results can be found at https:
//colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/maste
r/mathematical_results.ipynb.



https://colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/master/mathematical_results.ipynb
https://colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/master/mathematical_results.ipynb
https://colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/master/mathematical_results.ipynb

AlphaEvolve: A coding agent for scientific and algorithmic discovery

@ Scientist / Engineer

Prompt template Choice of existing . .
. - Evaluation code with components
and configuration or custom LLMs to evolve

R _— l _—

| & | e | W

Initial program

— — —_
Program database | Best program

Distributed Controller Loop

|
|
parent_program, inspirations = database.sample() :
prompt = prompt_sampler.build(parent_program, inspirations) |
diff = 1lm.generate(prompt) :
child program = apply diff(parent_program, diff) :
results = .execute(child _program) I
database.add(child_progrom, results) i

S AlphaEvolve

Figure 2 | Expanded view of the AlphaEvolve discovery process. The user provides an initial
program (with components to evolve marked), evaluation code, and optional configurations
(Section 2.1). AlphaEvolve then initiates an evolutionary loop. The Prompt sampler uses
programs from the Program database to construct rich prompts (Section 2.2). Given these
prompts, the LLMs generate code modifications (diffs), which are applied to create new
programs (Section 2.3). These are then scored by Evaluators (Section 2.4), and promising
solutions are registered back into the Program database (Section 2.5), driving the iterative
discovery of better and better programs.

as a Python function, called evaluate, with a fixed input/output signature, returning a
dictionary of scalars.

Depending on the application, executing this function may take only seconds on a single
device or spawn extensive computations. For mathematical problems, the function h is
typically very simple. For example, when wishing to find largest possible graphs satisfying a
given property, h invokes the evolved code to generate a graph, checks whether the property
holds, and then simply returns the size of the graph as the score. In more complicated
cases, the function h might involve performing an evolved search algorithm, or training and
evaluating a machine learning model.

API. To support evolving multiple components across a codebase, AlphaEvolve exposes an
input API where blocks of code can be annotated as to-be-evolved-by-the-system; see Figure 3a
for an illustration. This design facilitates integrating it with existing codebases while requiring
only minimal changes, simply by adding special markers (# EVOLVE-BLOCK-START and #
EVOLVE-BLOCK-END) as comments into the code.
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Any user-provided code inside such evolution blocks serves as the initial solution to be
improved by AlphaEvolve, and the rest of the code forms a skeleton that ties the evolved pieces
together, so that they can be invoked from evaluate. While this initial implementation
must be complete, it can be rudimentary—for instance, consisting of single-line functions
that return constants of the appropriate types.

Flexibility in choosing the abstraction. AlphaEvolve can be applied to the same problem
in very different ways—especially when the evolved programs are not the final output but
a means to discover solutions. For example, AlphaEvolve can evolve the solution in raw
string representation (as in classical evolutionary algorithms); evolve a function of a definite
form that specifies how to construct the solution from scratch (the approach taken in [83]);
evolve a bespoke search algorithm to find the solution within some fixed compute budget; or
even co-evolve intermediate solutions and search algorithms together, such that each search
algorithm is specifically tailored to further improve upon a particular intermediate solution.

We find that different levels of abstraction work better for different problems. For example,
we hypothesize that for problems with highly symmetric solutions it is advantageous to
evolve constructor functions as these tend to be more concise [83], whereas for problems
with non-symmetric solutions it works better to evolve customized search algorithms.

2.2. Prompt sampling

As AlphaEvolve leverages SOTA LLMs, it supports various types of customization and providing
long contexts as part of the primary evolution prompt. This prompt comprises multiple
previously discovered solutions sampled from the program database, as well as system
instructions on how to propose changes to a particular solution. Beyond these key ingredients,
users can further tailor prompts to their specific needs in different ways, such as the following.

* Explicit context: details about the problem being solved, such as fixed human-written
instructions, equations, code snippets, or relevant literature (e.g., pdf files).

* Stochastic formatting: template placeholders with human-provided alternatives for
increased diversity, instantiated using probability distributions provided in a separate
config file.

* Rendered evaluation results: usually this will include a program, the result of executing
that program, and the scores assigned by the evaluate function.

* Meta prompt evolution: instructions and context suggested by the LLM itself in an
additional prompt-generation step, co-evolved in a separate database analogous to the
solution programs.

2.3. Creative generation

To drive the evolutionary procedure, AlphaEvolve leverages the capabilities of SOTA LLMs,
whose principal role is to digest information about previously developed solutions and
propose new, diverse ways to improve the solutions. Although AlphaEvolve is model-agnostic,
in ablations we observe that AlphaEvolve performs increasingly better as the underlying LLM
improves (see Section 4).




AlphaEvolve: A coding agent for scientific and algorithmic discovery

# EVOLVE-BLOCK START
"""Image classification ezperiment in jazline.

win

import jax

# EVOLVE-BLOCK-END

# EVOLVE-BLOCK-START
class ConvNet (hk.Module) :
def __init__(self, num_classes):
def __call__(self, inputs, is_training):

def sweep():
return hyper.zipit([...])
# EVOLVE-BLOCK-END

def evaluate(eval_inputs) -> dict[str, float]:

return metrics

@ (D

The current model uses a simple ResNet architecture with only
three ResNet blocks. We can improve its performance by
increasing the model capacity and adding regularization. This
will allow the model to learn more complex features and
generalize better to unseen data. We also add weight decay to
the optimizer to further regularize the model and prevent
overfitting. AdamW is generally a better choice than Adam,
especially with weight decay.

<<<<<<< SEARCH
self._blockl = ResNetBlock(num_channels)
self._block2 = ResNetBlock(num_channels * 2, stride=2)
self._block3 = ResNetBlock(num_channels * 4, stride=2)

self._blockl = ResNetBlock(num_channels)
self._block2 = ResNetBlock(num_channels, stride=1)
self._block3 = ResNetBlock(num_channels * 2, stride=2)
self._block4 = ResNetBlock(num_channels * 2, stride=1)
self._block5 = ResNetBlock(num_channels * 4, stride=2)
self._block6 = ResNetBlock(num_channels * 4, stride=1)

>>>>>>> REPLACE

<<<<<<< SEARCH

def optimizer(self, learning_rate):

return optax.adam(learning_rate)

def optimizer(self, learning rate):
return optax.adamw(learning_rate, weight_decay=1le-4)

>>>>>>> REPLACE
© €K

Act as an expert software developer. Your task is to iteratively
improve the provided codebase. [...]

- Prior programs

Previously we found that the following programs performed well
on the task at hand:

top_1_acc: 0.796; neg_eval_log_loss: 0.230; average_score: 0.513

"""Image classification experiment in jaxline."""

Booo

class ConvNet (hk.Module) :
nnnNetwork. "M

def __init__(self, num_channels=32, num_output_classess=10):
super().__init__Q)
self._convl = hk.Conv2D(num_channels, kernel_shape=3)
self._conv2 = hk.Conv2D(num_channels * 2, kernel_shape=3)
self._conv3 = hk.Conv2D(num_channels * 4, kernel_shape=3)
self._logits_module = hk.Linear(num_output_classes)

[...]

- Current program

Here is the current program we are trying to improve (you will
need to propose a modification to it below).

top_1_acc: 0.862; neg_eval_log_loss: 0.387; average_score: 0.624

"""Tmage classification experiment in jaxline."""

[...
class ConvNet (hk.Module) :
e tworle. M

def __init__(self, num_channels=32, num_output_classes=10):
super (). __init__Q)
self._convl = hk.Conv2D(num_channels, kernel_shape=3)
self._blockl = ResNetBlock(num_channels)
self._block2 = ResNetBlock(num_channels * 2, stride=2)
self._block3 = ResNetBlock(num_channels * 4, stride=2)
self._logits_module = hk.Linear(num_output_classes)

(o 00d

SEARCH/REPLACE block rules:
[...d

Make sure that the changes you propose are consistent with each
other. For example, if you refer to a new config variable
somewhere, you should also propose a change to add that
variable.

Example:

[
Task
Suggest a new idea to improve the code that is inspired by your

expert knowledge of optimization and machine learning.

Describe each change with a SEARCH/REPLACE block.

(b)

Figure 3 | Illustrative example of applying AlphaEvolve to evolving a supervised learning
pipeline. All snippets are abbreviated, with ellipsis (...) indicating skipped lines. (a) The
user-provided file with blocks marked for evolution, and the special evaluate function
that can be invoked to score the current version of the code. (b) Example of an assembled
prompt to be provided to the LLMs. (c) Example output generated by the LLM. The proposed
diffs in (c) will be applied to the "current program" shown in the prompt (b), and the
resulting modified program will then be sent to the evaluators. The evaluators will invoke the
evaluate function from (a) in order to obtain the scores of the newly proposed program.
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Output format. When AlphaEvolve asks an LLM to modify existing code, especially within
larger codebases, it requests the changes to be provided as a sequence of diff blocks in a
specific format:

<<<<<<< SEARCH
# Original code block to be found and replaced

# New code block to replace the original
>>>>>>> REPLACE

Here, the code between <<<<<<< SEARCH and ======= is the exact segment to match
in the current program version. The code between ======= and >>>>>>> REPLACE is the
new segment that will replace the original one. This allows for targeted updates to specific
parts of the code.

In cases where the code being evolved is very short, or when a complete rewrite is more
appropriate than a small modification, AlphaEvolve can be configured to instruct the LLM to
output the entire code block directly, rather than using the diff format.

Models used. AlphaEvolve employs an ensemble of large language models. Specifically, we
utilize a combination of Gemini 2.0 Flash and Gemini 2.0 Pro. This ensemble approach allows
us to balance computational throughput with the quality of generated solutions. Gemini 2.0
Flash, with its lower latency, enables a higher rate of candidate generation, increasing the
number of ideas explored per unit of time. Concurrently, Gemini 2.0 Pro, possessing greater
capabilities, provides occasional, higher-quality suggestions that can significantly advance
the evolutionary search and potentially lead to breakthroughs. This strategic mix optimizes
the overall discovery process by maximizing the volume of evaluated ideas while retaining
the potential for substantial improvements driven by the more powerful model.

2.4. Evaluation

To track AlphaEvolve’s progress and to select which ideas to propagate in future generations,
each new solution proposed by the LLMs is automatically evaluated. In principle, this process
amounts to simply executing the user-provided evaluation function h on the generated
solution. In practice, AlphaEvolve supports optional mechanisms to make this evaluation
more flexible and more efficient:

* Evaluation cascade (hypothesis testing): the user can specify ensembles of test cases of
increasing difficulty, such that new solutions are evaluated on the next stage only if they
achieve sufficiently promising results in all earlier stages. This helps to prune out less
promising solutions more quickly. Moreover, new solutions are initially evaluated on a
small scale before being subjected to the main test cases, to filter out faulty programs
early.

* LLM-generated feedback: in some applications, desirable solutions have certain charac-
teristics that are difficult to capture precisely in the user-provided evaluation function
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h; for example, simplicity of the discovered program. These properties can be graded
using separate LLM calls and added to the dictionary of scores to steer evolution, or
they can be used to discard solutions when a criterion is not fulfilled.

* Parallelized evaluation: the sample efficiency of AlphaEvolve makes it feasible to spend
on the order of 100 compute-hours to evaluate any new solution. However, unless
individual evaluations are parallelized to reduce their wall-clock duration, this can slow
down the rate at which new generations appear, limiting the ability of the evolutionary
algorithm to apply several consecutive mutations. In many applications, evaluation is
embarrassingly parallel (for example, running a search algorithm from multiple random-
ized initializations), allowing AlphaFEvolve to distribute this work through asynchronous
calls to an evaluation cluster.

Multiple scores. AlphaEvolve allows for optimizing multiple user-provided scores, i.e.,
evolving objects that achieve a high score under one or multiple evaluation metrics. This has
both an intrinsic and instrumental value. While in multiple applications we genuinely care
about developing solutions for multiple evaluation metrics (or one solution that is strong
on all of them simultaneously), we find that even if one metric is of particular interest,
optimizing for multiple metrics often improves results for the single target metric. Perhaps
this occurs because programs excelling under different evaluation criteria often possess
distinct structures or logic and, by incorporating examples of these diverse, high-performing
programs—each representing a different definition of “good”—into the prompts provided to
the language model, we can stimulate the generation of more varied candidate solutions,
increasing the chances of discovering novel approaches that are highly effective for the target
metric.

2.5. Evolution

During its evolutionary procedure, AlphaEvolve continually generates a growing number of
solutions with evaluation results (scores and program outputs) attached to them. These
solutions are stored in an evolutionary database, the primary goal of which is to optimally
resurface previously explored ideas in future generations. A key challenge in designing
such databases is balancing exploration and exploitation, to continuously improve the best
programs while maintaining diversity to encourage exploration of the entire search space.
In AlphaEvolve, the evolutionary database implements an algorithm that is inspired by a
combination of the MAP elites algorithm [74] and island-based population models [83, 97].

2.6. Distributed pipeline

AlphaEvolve is implemented as an asynchronous computational pipeline (using the asyncio
Python library) in which many computations are run concurrently, with each computation
blocking (waiting) whenever its next step relies on the result of another, yet unfinished
computation. More specifically, the asynchronous pipeline comprises a controller, LLM
samplers, and evaluation nodes. The entire pipeline is optimized for throughput (rather than
the speed of any one particular computation), in order to maximize the number of ideas that
can be proposed and evaluated within a specific overall computation budget.
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(m,n,p) best known [reference] AlphaEvolve

(2,4,5) 33 [42] 32
(2,4,7) 46 [93] 45
(2,4,8) 52 [93] 51
(2,5, 6) 48 [93] 47
(3,3,3) 23 [52] 23
(3,4, 6) 56 [48] 54
(3,4,7) 66 [91] 63
(3,4,8) 75 [91] 74
(3,5, 6) 70 [48] 68
(3,5,7) 82 [91] 80
(4,4,4) 49 [95] 48
(4,4,5) 62 [47] 61
(4,4,7) 87 [93] 85
(4,4, 8) 98 [95] 96
(4,5, 6) 93 [48] 90
(5,5,5) 93 [72] 93

Table 2 | Upper bounds on the rank of the tensor (m, n, p) representing the product of an mxn
matrix and an n X p matrix, i.e. the number of scalar multiplications required to compute this
matrix product. Beyond the examples shown here, for all parameters m, n, p < 5, AlphaEvolve
either matched or surpassed the best known solutions, and provided exact algorithms (see
Table 3 in appendix for full results). For (3,4,7), (4,4,4), and (4, 4, 8), the algorithms
discovered by AlphaEvolve use complex-valued multiplications which can be used for exact
multiplication of complex or real-valued matrices. The decompositions shown in this table
can be found in the accompanying Google Colab.

3. Results

3.1. Faster matrix multiplication via finding novel algorithms for tensor decomposition

From accelerating machine learning computations to enabling realistic computer graphics,
matrix multiplication serves as a fundamental operation underpinning numerous critical
algorithms and applications within computer science. Since the pioneering work of Strassen
[95], it has been known that a rich space of algorithms for multiplying two matrices can be
represented as decompositions of a given 3D tensor into rank-one tensors. The rank (number
of terms) of the decomposition exactly specifies the number of scalar multiplications needed
to compute the matrix product. Hence, to develop faster matrix multiplication algorithms
one needs to find low-rank decompositions of particular tensors. This problem has been
tackled with many approaches, from specialized alternating least squares solvers [93] to
deep reinforcement learning [26] and custom search algorithms [47]; yet, despite decades
of effort, even for the simple case of multiplying two 3 x 3 matrices, the minimum achievable
rank is not known, showcasing the difficulty of the problem.

Starting from the problem description and a standard gradient-based algorithm (including
an initializer, a reconstruction loss function, and an Adam optimizer [50]), AlphaEvolve is
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able to develop sophisticated tensor decomposition algorithms that outperform existing
approaches. To evaluate each evolved program, we choose a set of matrix multiplication
targets and run the algorithm, initialized with multiple random seeds using the evaluation
cascade described in Section 2.4. The performance is then measured as the best (lowest) rank
achieved on each target as well as the fraction of seeds that achieved this rank, providing
a signal for AlphaEvolve to hill-climb. To ensure the exactness of the decomposition and
avoid any potential numerical error, when evaluating, we round each element to the nearest
integer or the nearest half-integer; and, to encourage the algorithm to generate near-integral
solutions, we include this request in natural language in the LLM’s prompt.

In Table 2, one can see that the various algorithms developed by AlphaEvolve improve the
state of the art for 14 different matrix multiplication targets. Notably, for multiplying two
4 x 4 matrices, applying the algorithm of Strassen [95] recursively results in an algorithm
with rank (number of scalar multiplications) equal to 49, which works over any field. For
the very specific case of multiplying in the field with 2 elements, Fawzi et al. [26] found an
algorithm with rank 47. For 56 years, designing an algorithm with rank less than 49 over
any field with characteristic 0 was an open problem.? AlphaFEvolve is the first method to find
a rank-48 algorithm to multiply two 4 x 4 complex-valued matrices.

As shown in Figure 4, AlphaEvolve makes significant changes to the initial program,
introducing several original ideas to design increasingly better algorithms. While most
results in Table 2 (including (4, 4, 4)) were obtained from a simple initial program, we found
that for some parameters, seeding the initial program with our own ideas (such as adding
stochasticity to the evaluation function or using evolutionary approaches) could further boost
performance, highlighting the possibility of scientific collaboration between researchers and
AlphaEvolve.

3.2. Finding tailored search algorithms for a wide range of open mathematical problems

A significant frontier in mathematical research involves discovering objects or constructions
that possess optimal, or near-optimal, properties according to some measure. Examples
range from finding dense packings of geometric shapes [29] to identifying functions or sets
satisfying specific combinatorial or analytic constraints (e.g., [39, 40, 70, 104]). Progress
often relies on finding a single construction that surpasses all previously known examples,
thereby establishing new lower or upper bounds for the optimal value. We demonstrate that
AlphaEvolve serves as a powerful tool for exploring the vast search space inherent in these
problems, successfully tackling a diverse array of open mathematical challenges.

To assess its capabilities, we apply AlphaEvolve to a curated set of over 50 mathematical
problems, spanning more than five different branches of mathematics, including analysis,
combinatorics, number theory, and geometry, evaluated across numerous specific parameter
settings (e.g., different dimensions or sizes). In 75% of the cases AlphaEvolve rediscovered
the best known constructions, and in 20% of the cases it discovered a new object that is better
than a previously known best construction, thereby improving the SOTA. In all these cases,
the initial starting point was a simple or a random construction. These results underscore
AlphaEvolve’s broad potential as a versatile tool for mathematical research.

3There exist algorithms using fewer than 49 multiplications, but they do not correspond to decompositions
of the matrix multiplication tensor, and they cannot be applied recursively to multiplying larger matrices.
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) u‘iv:d:su;c;'smx 1| @@ -45,9 +45,14 @@
t_optinizar(selt) o> optax.GradientTranatoraation: ) # EVOLVE-BLOCK-START
. :::::);i:: S e Amine ) 3 def _get_optimizer(self) -> optax.GradientTransformation:
L sl hypers. laarning rate, veight_dscay=self.hypers.veight_decay A
g 4 """Returns optimizer."""
dot per_inieta(aalt) > darmn dnicializers. Dnitializers 5| = return optax.adam(self.hypers.learning_rate)
s R o 6| + return optax.adamw (
S s et g e 7|+ self .hypers.learning_rate, weight_decay=self.hypers.
B e el O Sy roneetans o2 yapTeanpLaze) T L
50 o Loptupdate (grads opystase, deconposivion) 8| + )
. toptax Gancompenition  spinter) 9
2 ’ 10 def _get_init_fn(self) -> jax.nn.initializers.Initializer:
% LB O T T TR LT £ Do 11 """Returns initializer functiom."""
M 12| = return initializers.normal (0.0, self.hypers.init_scale, jnp.
b o G complex64)
13| + # Initialize with a smaller scale to encourage finding low-rank
= solutions.
N 14| + # Increase scale slightly for better exploration.
p 15| + scale = self.hypers.init_scale
3 16| + return initializers.normal(0 + 1j * 0, scale * 0.2, jnp.complex64)
: z 1) @@ -91,13 +156,86 Q@
- a 2 """Computes (batched) loss on learned decomposition."""
M i 3 # Compute reconstruction loss.
3 O — 4 rec_tensor = self._decomposition_to_tensor(decomposition) # (B, N
: o M, P)
p Jop. whereC ) 5| .
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Figure 4 | Changes proposed by AlphaEvolve to discover faster matrix multiplication algo-
rithms. The full diff is outlined on the left (see magnified version in Figures 9a to 9¢) and
some excerpts are highlighted on the right. In this example, AlphaEvolve proposes extensive
changes across several components, including the optimizer and weight initialization (top
right), the loss function (middle right), and hyperparameter sweep (bottom right). These
changes are highly non-trivial, requiring 15 mutations during the evolutionary process.
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Figure 5 | Examples of SOTA-breaking mathematical constructions discovered with AlphaE-
volve. The versatility of AlphaEvolve allows us to tackle problems in analysis (autocorrelation
and uncertainty inequalities), geometry (packing and minimum/maximum distance prob-
lems) and combinatorics (Erdés’s minimum overlap problem and sums and differences of
finite sets).

A significant advantage of the AlphaEvolve configuration used here is its versatility and
speed of application. The core methodology, focused on evolving heuristic search programs
(detailed below), can be rapidly deployed across a diverse range of mathematical construction
problems and conjectures, often requiring less initial problem-specific expert tailoring com-
pared to traditional bespoke approaches. While deep mathematical insight naturally aids in
problem formulation and search space definition, AlphaEvolve often demonstrates a capacity
to autonomously discover effective search patterns and attack strategies by identifying subtle
structures within the problem landscape. This allows for efficient, large-scale exploration
across many different problems.

The key methodological innovation enabling these discoveries is AlphaEvolve’s ability to
evolve heuristic search algorithms rather than directly evolving the constructions themselves.
For many problems, particularly those with fast objective function evaluations—which are
common in mathematics—we employed an iterative refinement strategy. Each generation of
AlphaEvolve was tasked with evolving a program representing a search heuristic. This program
was given a fixed time budget (e.g., 1000 seconds) and was shown the best construction found
by the previous best heuristic. Its goal was to leverage this starting point and the allotted time
to find an even better construction. The evolutionary process thus selects for heuristics that
are effective at improving already high-quality solutions. The final constructions were often
the result of a sequence of different, specialized heuristics discovered by AlphaEvolve—early
heuristics proficient at making large gains from random or simple initial states, and later
heuristics adept at fine-tuning near-optimal configurations. This automated discovery of
multi-stage, adaptive search strategies is challenging to replicate manually and proved crucial
for surpassing the SOTA.

Below are high-level descriptions of some of the problems where AlphaEvolve yielded new
results. Full list of problems and details are provided in Appendix B.
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* Analysis

— Autocorrelation inequalities. AlphaEvolve was able to improve the best known
bounds on several autocorrelation inequalities.

— Uncertainty principles. AlphaEvolve was able to produce a refined configuration
for a problem arising in Fourier analysis, by polishing an uncertainty principle
construction [33] leading to a slightly better upper bound.

* Combinatorics and number theory

— Erdés’s minimum overlap problem. AlphaEvolve established a new upper bound
for the minimum overlap problem [25], slightly improving upon the previous
record [40].

* Geometry and packing

- Kissing number problem. In 11 dimensions, AlphaEvolve improved the lower
bound on the kissing number, finding a configuration of 593 non-overlapping
unit spheres that can simultaneously touch a central unit sphere, surpassing the
previous record of 592 [31].

— Packing problems. AlphaEvolve achieved several new results in packing problems,
such as packing N points in a shape to minimize the ratio of the maximum
and minimum distance, packing various polygons in other polygons in the most
efficient way, and variants of the Heilbronn problem concerning point sets avoiding
small-area triangles [29].

The full list of problems appears in Appendix B and the new constructions found by
AlphaEvolve can be found in the accompanying Google Colab. More examples and details
on these problems and the methods used will be provided in an upcoming paper. Most of
these discoveries are on open problems suggested to us by external mathematicians Javier
Gomez Serrano and Terence Tao, who also advised on how to best formulate them as inputs
to AlphaEvolve. This highlights the potential for synergistic partnerships between Al-driven
discovery engines like AlphaEvolve and human mathematical expertise.

3.3. Optimizing Google’s computing ecosystem

In addition to the scientific applications presented in preceding sections, here we demonstrate
how AlphaEvolve has been used to improve performance of mission-critical infrastructure and
deliver real-world impact.

3.3.1. Improving data center scheduling

Efficiently scheduling compute jobs onto a cluster of machines is a critical optimization
problem, particularly at the scale of Google’s data centers, orchestrated by Borg [102]. This
task involves assigning jobs to available machines based on job resource requirements and
machine capacity. Inefficient assignments can result in stranded resources: when a machine
can no longer accept jobs because it has run out of one kind of resource (e.g., memory)
but still has other resources free (e.g., CPU). Improvements in scheduling efficiency can
recover these stranded resources, allowing more jobs to be completed on the same amount
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100%

def alpha_evolve_score(required, free):
cpu_residual = required.cpu / free.cpu
mem_residual = required.mem / free.mem

return -1.0 * (cpu_residual + mem_residual +
mem_residual / cpu_residual +
cpu_residual / mem_residual)

Memory residual

% 25% 50% 75% 100%
CPU residual

Figure 6 | Left: The heuristic function discovered by AlphaEvolve, tailored to Google’s
workloads and capacity. Right: Visualization of the heuristic scoring function. Yellow regions
represent high scores, while purple regions represent low scores.

of computational footprint. This recovery is essential to accommodate growing compute
needs without a proportional increase in resource consumption. Furthermore, this problem
is challenging since it combines typical engineering difficulties, such as debuggability and
scale, on top of the classically difficult bin-packing problem.

We address this challenge by framing the online job scheduling problem as a vector
bin-packing problem with two variables. In this context, machines represent bins with
defined capacities for CPU and memory, and incoming jobs are items with specific resource
demands. A heuristic function takes as input a pending job’s CPU and memory requirements
and a potential machine’s CPU and memory availability. This function then outputs a priority
score for the machine. The Borg scheduler subsequently assigns the pending job to the
machine with the highest priority score as determined by the heuristic function, among other
objectives. Because this heuristic only influences the ranking of machines already determined
by Borg to be available and capable of running each pending job, the resulting scheduling
decisions are effectively correct by construction.

An early version of AlphaEvolve was used to discover a remarkably simple yet effective
heuristic function (shown in Figure 6), evolving from the existing one in production. We
use a simulator of our data centers to provide feedback to AlphaEvolve based on historical
snapshots of workloads and capacity across Google’s fleet. We measure the performance of
AlphaEvolve’s heuristic function on an unseen test dataset of recent workloads and capacity
to ensure generalization. Observing that AlphaEvolve’s heuristic function outperforms the
one in production, we rolled out AlphaEvolve’s heuristic function to the entire fleet. Post-
deployment measurements across Google’s fleet confirmed the simulator results, revealing
that this heuristic function continuously recovers on average 0.7% of Google’s fleet-wide
compute resources, which would otherwise be stranded. AlphaEvolve was chosen over a
deep reinforcement learning approach because its code solution not only leads to better
performance, but also offers clear advantages in interpretability, debuggability, predictability,
and ease of deployment—essential qualities for a mission-critical system.
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Figure 7 | Visualization of the tiling heuristic problem for a matrix product AB = C. Creating
a heuristic that automatically chooses the right tile size (M, N, P) for all input shapes is
difficult because one has to know the matrix multiplication unit’s optimal shapes and memory
capacity, the memory requirements of surrounding operations, extra operations that are
fused into the kernel, and low-level compiler intricacies, among other details.

3.3.2. Enhancing Gemini kernel engineering

Training large models like Gemini requires substantial computational resources. Gemini
is built on JAX [9], and Pallas is an extension to JAX that enables writing custom, highly
specialized programs (kernels) tailored for optimal execution on hardware accelerators.
Therefore, efficient Pallas kernels are crucial for optimizing Gemini’s training performance.
A critical aspect of kernel optimization is tuning the tiling strategy for matrix multiplication
operations (see Figure 7). This technique involves dividing a large matrix multiplication
computation into smaller subproblems to better balance computation with data movement,
which is key to accelerating the overall computation. Traditionally, kernel engineers rely on
either search-based autotuning or manually crafted heuristics to determine near-optimal
tiling configurations for various input shapes. Search-based tuning interrupts the research
workflow, necessitating retuning for every input shape change. Conversely, manually crafting
effective tiling heuristics is a major engineering bottleneck due to its complexity, demanding a
deep understanding of both kernel functionality and hardware intricacies. The key advantage
of a performant heuristic is its ability to deliver high performance across arbitrary input
shapes. Consequently, to expedite the design of performant kernels for emerging hardware
and to simplify their utilization by model developers, we aim to facilitate the heuristic
generation process.

We address this challenge by employing AlphaEvolve to optimize tiling heuristics for an
important matrix multiplication kernel used to train Gemini. The objective is to minimize
the kernel’s actual runtime. AlphaEvolve iteratively explores and refines tiling heuristics for
this kernel by proposing candidate code, aiming to minimize this runtime on various input
shapes on real TPU accelerators. The kernel’s correctness is maintained by construction
because AlphaEvolve is optimizing the tiling strategy for this kernel rather than altering
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its underlying mathematical operation. To build the training and evaluation datasets for
AlphaEvolve, we automatically collect realistic kernel input shapes from kernel users. Half
of these input shapes form the training set, providing the optimization targets during the
evolutionary process. The remaining input shapes form the evaluation set, used to test the
general applicability of the resulting heuristic.

This automated approach enables AlphaEvolve to discover a heuristic that yields an
average 23% kernel speedup across all kernels over the existing expert-designed heuristic,
and a corresponding 1% reduction in Gemini’s overall training time. In addition, the use
of AlphaEvolve significantly reduced the kernel optimization time, from several months of
dedicated engineering effort to just days of automated experimentation. This acceleration
speeds up the deployment of optimized kernels, allowing kernel engineers to dedicate their
expertise to more strategic, higher-level optimization problems. Furthermore, AlphaEvolve
offers a path towards automating the manual tuning process and improving the ergonomics
of Gemini kernel usage. The tiling heuristic discovered by AlphaEvolve has been deployed in
production, directly enhancing Gemini’s training efficiency and the Gemini team’s research
and engineering velocity. This deployment also marks a novel instance where Gemini,
through the capabilities of AlphaEvolve, optimizes its own training process.

3.3.3. Assisting in hardware circuit design

Specialized hardware, such as Google’s Tensor Processing Units (TPUs), is crucial for achieving
the resource efficiency required to run modern Al systems at scale. However, designing new
computer chips is a complex and time-consuming process, often spanning years. Register-
Transfer Level (RTL) optimization, a critical step in this process, involves manually rewriting
hardware descriptions to improve metrics like power, performance, and area, demanding
months of iteration by highly skilled engineers.

In this work, AlphaEvolve was challenged to optimize an already highly optimized Verilog
implementation of a key TPU arithmetic circuit within the matrix multiplication unit. The
optimization objectives were to reduce both area and power consumption while preserving
the component’s core functionality. Crucially, the final proposal must pass robust verification
methods to confirm that the modified circuit maintains functional correctness. AlphaEvolve
was able to find a simple code rewrite that removed unnecessary bits, a change validated by
TPU designers for correctness. While this specific improvement was also independently caught
by downstream synthesis tools, AlphaEvolve’s contribution at the RTL stage demonstrates its
capability to refine source RTL and provide optimizations early in the design flow.

Integrated into an upcoming TPU, this improvement represents Gemini’s first direct
contribution to TPU arithmetic circuits, achieved via AlphaEvolve, paving the way for future
contributions. A key advantage of AlphaEvolve is that it communicates the suggested changes
directly in Verilog, the standard language used by hardware engineers, fostering trust and
simplifying adoption. This early exploration demonstrates a novel approach where LLM-
powered code evolution assists in hardware design, potentially reducing time to market.
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3.3.4. Directly optimizing compiler-generated code

The transformer architecture [100] is used in the majority of modern neural networks,
ranging from LLMs to AlphaFold [1]. The core computation of transformers is the attention
mechanism [4], which is most commonly implemented using FlashAttention [22]. In our
stack, FlashAttention is implemented as an accelerator kernel in Pallas, wrapped by higher-
level code in JAX that handles input preparation and output postprocessing. The machine
learning compiler (XLA [77]) then translates this implementation into a sequence of interme-
diate representations (IRs), each adding more detail for execution on particular hardware. At
these stages, improved decisions on memory access orchestration or computation scheduling
can significantly reduce runtime on specific hardware.

We challenged AlphaEvolve to directly optimize the XLLA-generated IRs encapsulating the
FlashAttention kernel along with pre- and postprocessing code. We optimized a configuration
corresponding to a highly impactful transformer model used for inference at scale on GPUs,
with the goal of minimizing the module’s overall execution time. This was a particularly
challenging task, because (1) the IR is designed for debugging purposes rather than for direct
editing by developers, and (2) it is compiler-generated and already highly optimized. Each
modification proposed by AlphaEvolve was checked against the reference (unmodified) code
on randomized inputs in order to ensure numerical correctness throughout optimization.
The final version of the code was rigorously confirmed by human experts to be correct for all
possible inputs.

AlphaEvolve was able to provide meaningful optimizations for both levels of abstraction
exposed by the IR. Firstly, the FlashAttention kernel for the configuration of interest was sped
up by 32%. Secondly, AlphaEvolve found improvements in pre- and postprocessing of kernel
inputs and outputs, resulting in a 15% speed up in this part. These results demonstrate
the ability of AlphaEvolve to optimize compiler-generated code, offering the potential of
incorporating discovered optimizations into existing compilers for specific use cases, or, in
the longer term, incorporating AlphaEvolve into the compiler workflow itself.

4. Ablations

We carried out ablations on two tasks: finding tensor decompositions for faster matrix
multiplication (Section 3.1) and computing lower bounds on kissing numbers (Section 3.2),
aiming to understand the efficacy of the following components of AlphaEvolve.

* Evolutionary approach. AlphaEvolve utilizes an evolutionary approach, where previ-
ously generated programs are stored in a database and used to obtain better programs
in subsequent iterations. To analyze the importance of evolution, we consider an
alternative approach, which repeatedly feeds the same initial program to the language
model. We refer to this approach as “No evolution”.

* Context in prompts. AlphaEvolve uses powerful language models with large context
windows, whose output can be improved significantly by providing problem-specific
context in the prompt. To test the importance of context, we consider an alternative
approach where no explicit context is added to the prompt. We refer to this approach
as “No context in the prompt”.

17



AlphaEvolve: A coding agent for scientific and algorithmic discovery

Matrix multiplication tensor decomposition Kissing number problem

|
-
o

|
N
=]

Full method r
No meta prompt evolution
Small base LLM only

No context in the prompt
No full-file evolution

No evolution

|
w
=

Target metric (aggregated)

|
IS
o

—— Full method
—— No context in the prompt
—— No evolution

Target metric (aggregated)

A

_1%6 25% . Y 75% 100% % 25% . 50% 75% 100%
Fraction of compute budget Fraction of compute budget

[S]
o
X

b
[esd

Figure 8 | Left: Ablations of AlphaEvolve on the problem of finding low-rank tensor decom-
position for faster matrix multiplication. Right: Ablations of AlphaEvolve on the problem of
finding sphere packings for improving kissing numbers. Each curve shows the performance
of an individual setting with increasing compute budget, averaged over all considered targets
(higher values on the target metric are better). The shades indicate intra-target standard
deviation, averaged over three independent runs of AlphaEvolve, initialized with different
random seeds.

* Meta prompts. AlphaEvolve also uses meta prompts in order to improve the prompts
that are provided to the language model. This allows it to potentially surpass the
performance one can obtain using a human prompter. To test the efficacy of meta
prompting, we disable it for the task of tensor decomposition. We refer to this approach
as “No meta prompt evolution”.

* Full-file evolution. Unlike previous approaches such as FunSearch, AlphaEvolve can
evolve an entire codebase instead of focusing on a single function. To test the im-
portance of full-file evolution, we consider an alternative in the context of tensor
decomposition where only the loss function is evolved. We refer to this approach as
“No full-file evolution”.

* Powerful language models. AlphaEvolve relies on a mixture of small and large lan-
guage models in order to obtain highly diverse samples. To understand the importance
of this component, we consider an alternative where only a single small base model is
used. We refer to this approach as “Small base LLM only”.

Figure 8 shows the results of the all-inclusive AlphaEvolve approach as well as the various
alternatives listed above. As can be seen, each of the components is responsible for a
significant improvement in the results.

5. Related work

Evolutionary methods. AlphaFEvolve extends a long tradition of research on evolutionary
or genetic programming [54], where one repeatedly uses a set of mutation and crossover
operators to evolve a pool of programs [5, 51]. In particular, classical evolutionary techniques
have succeeded in symbolic regression applications [66, 87], automated scientific [21] or
algorithmic [16] discovery, and scheduling [118] problems. However, a challenge with these

18



AlphaEvolve: A coding agent for scientific and algorithmic discovery

methods is the use of handwritten evolution operators, which can be hard to design and may
fail to capture important properties of the domain. In contrast, AlphaEvolve uses LLMs to
automate the construction of these operators—it leverages the LLM’s world knowledge to
mutate programs without the need to pre-define a set of allowed mutation operations.

AlphaEvolve was preceded by a body of recent efforts that combine LLMs and evolution;
specifically, it extends the FunSearch system, introduced by Romera-Paredes et al. [83] as an
approach to mathematical discovery. FunSearch was subsequently used in downstream tasks
such as learning acquisition functions for Bayesian optimization [2], discovering cognitive
models [13], computing distances between graphs [103], or combinatorial competitive
programming [101]. AlphaEvolve goes beyond FunSearch and its recent reimplementation
[24] in three key ways. First, while FunSearch only allowed the evolution of a single Python
function, AlphaEvolve allows evolution over entire codebases written in a wide range of
programming languages. Second, FunSearch optimized a single objective function, while
AlphaEvolve provides the ability to perform multiobjective optimization. Third, the LLMs in
FunSearch were relatively small and solely trained on code. By contrast, AlphaEvolve uses
frontier LLMs and rich forms of natural-language context and feedback. As has been demon-
strated in this paper, these extensions allow AlphaEvolve to address important challenging
problems that were not amenable to FunSearch.

Other efforts in this category include the approach by Lehman et al. [57], which uses
an LLM-guided evolution process to discover programmatic policies for a set of simulated
robots; or the approach by Hemberg et al. [41] for code synthesis. Similar approaches have
found use in several scientific and mathematical tasks, including symbolic regression [35,
89], discovering heuristics for combinatorial optimization [63, 115, 117], and synthesizing
molecular structures [105]. LLM-guided evolution has also been used to improve Al systems
by enhancing LLM prompts [27] and searching over neural architectures [14, 73]. AlphaEvolve
differs from these approaches in its scale, flexibility, and general applicability to a broad
range of domains.

Some recent efforts have augmented the basic paradigm of LLM-guided evolution with
complementary ideas. For example, Surina et al. [96] complement the evolution process
by continuously finetuning the LLM through reinforcement learning. Grayeli et al. [35]
enhance the evolution process with an LLM-directed concept learning step that summarizes
high-performing programs in the pool into natural language. More investigation is required
to understand the benefits of these ideas at the scale at which AlphaEvolve operates.

Evolutionary methods have also found use in the recent Al Co-Scientist work [34], which
seeks to automate scientific discovery using distinct agents for tasks like hypothesis discovery,
ranking of hypotheses, and literature review. While AI Co-Scientist represents scientific
hypotheses and their evaluation criteria in natural language, AlphaEvolve focuses on evolving
code, and directs evolution using programmatic evaluation functions. This choice enables
us to substantially sidestep LLM hallucinations, which allows AlphaEvolve to carry on the
evolution process for a large number of time steps. Nevertheless, it is possible in principle
to combine the two approaches, leading to a method that allows a flexible combination of
natural-language and programmatic idioms.

19



AlphaEvolve: A coding agent for scientific and algorithmic discovery

Superoptimization and algorithm discovery. AlphaEvolve can be viewed as a method for
code superoptimization in that it iteratively improves an initial program using execution feed-
back. The idea of code superoptimization goes back to the 1980s [69]; pre-LLM approaches
to the problem included systematic enumeration [69], genetic search [20], Monte Carlo
sampling [86], and deep reinforcement learning [68]. Additionally, in limited settings that
focus on a single problem such as matrix multiplication, there have been systems such as
AlphaTensor that were also able to discover provably correct algorithms [26].

More recently, a body of LLM-based approaches to superoptimization and algorithm
discovery have emerged. This literature builds on the success of LLMs in coding tasks,
perhaps best illustrated by their success in (simulated) programming competitions as in
the case of AlphaCode [60]. For instance, LLM agents have been used to optimize certain
operations in GPU kernels, such as the attention operation [15] or more general user-specified
operations [56]. There is also work on using LLMs to discover novel evolutionary algorithms
[55], train language models [58], and optimize warehouse-scale computers [61]. Other
recent work [108] has also proposed the use of multiple LLM agents that converse with each
other to accomplish mathematical and coding tasks.

While previous work on using LLMs for algorithm discovery provided promising results,
AlphaEvolve’s approach to leverage it for evolutionary algorithms allows us to address signifi-
cantly more challenging problems, as demonstrated in Section 3.

Al for scientific and mathematical discovery. Over the last decade, Al systems have been
applied to a wide range of scientific disciplines and tasks, from protein structure prediction
[46] to quantum physics [6, 84] to climate sciences [53]. In particular, there are numerous
recent LLM-based methods that target scientific problems in multiple disciplines, such as
materials science [45, 71, 94, 119], chemistry [12, 64], bioinformatics [67, 85], geoscience
[79], and quantum physics [30, 78] (for surveys on the topic, see [36, 65, 81]).

Many of these methods use LLMs to automate several distinct stages of the scientific
discovery process [37, 59, 106, 109, 112], e.g., for generating and ranking hypotheses and
ideas [38, 90]. Of these methods, especially related to AlphaEvolve are the methods that
use LLM-guided tree search-based algorithms [11] or LLM-guided evolutionary algorithms
[34, 113, 120]. Other works use LLMs to optimize experimental planning and design
[7, 10, 43, 75] or experiment execution and workflow [28, 62, 82, 105, 116]. Finally, there
are also works focusing on the data analysis stage [80]. AlphaEvolve differs from most of
these methods in its use of programmatic hypothesis representations and evaluation metrics.

Al systems have also contributed to advances in pure mathematics [23]. In this context,
the FunSearch approach [24, 83] established LLM-guided evolution as a powerful tool for
discovering witnesses for, and counterexamples to, mathematical statements—a problem that
is complementary to that of finding formal and informal proofs of mathematical statements [3,
19, 98, 99, 110, 111].
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6. Discussion

AlphaEvolve demonstrates the surprising power of combining state-of-the-art LLMs with
automated evaluation metrics within an evolutionary framework, which can lead to new
discoveries on decades-old mathematical problems as well as practical improvements to
highly optimized compute stacks.

Interestingly, AlphaEvolve often allows approaching the same problem in different ways:
searching for the solution directly, finding a function that constructs it from scratch, or
evolving a search algorithm to find it. Applying AlphaEvolve in different ways comes with
different biases (for example, finding constructive functions may favor discovering highly
symmetric objects [83]) and thus can suit different problems.

AlphaEvolve can also be seen as a test-time compute agent that, through its evolutionary
procedure, significantly enhances the capability of the base LLM (compared to, e.g., repeated
sampling). On one hand, this can be seen as a compelling demonstration of how machine
feedback is able to sustain test-time compute scaling up to regimes where new scientific
discoveries and highly valuable practical optimizations are made. On the other hand, a
natural next step will be to consider distilling the AlphaEvolve-augmented performance of
the base LLMs into the next generation of the base models. This can have intrinsic value and
also, likely, uplift the next version of AlphaEvolve.

Beyond distillation, it is also intriguing that AlphaEvolve can make practical discoveries
that increase the efficiency of its own infrastructure and of (future versions of) its base LLMs.
Currently, the gains are moderate and the feedback loops for improving the next version of
AlphaEvolve are on the order of months. However, with these improvements we envision
that the value of setting up more environments (problems) with robust evaluation functions
will become more widely recognized, which in turn will result in more high-value practical
discoveries going forward.

The main limitation of AlphaEvolve is that it handles problems for which it is possible to
devise an automated evaluator. While this is true of many problems in the mathematical and
computational sciences, there are domains such as the natural sciences where only some
experiments can be simulated or automated. While AlphaEvolve does allow for LLM-provided
evaluation of ideas, this is not a setting we have optimized for. However, concurrent work
shows this is possible [34], and a natural step would be to link the two settings, with LLMs
providing feedback on high-level ideas before transitioning to an implementation stage, for
which machine feedback is available through code execution.
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A. Faster matrix multiplication: Full results

Full table of results. We provide the best ranks obtained by AlphaEvolve in Table 3. Overall,
we considered 54 matrix multiplication sizes in our experiments. These were chosen roughly
representing sizes (m, n, p) where 2 < m,n < 5, with some reasonable cutoff for p. Due to
symmetries of the underlying matrix multiplication tensor, there exist equivalent algorithms
for any permutations of the three axes, hence we focus on sorted sizes m < n < p.

In all but two considered sizes, AlphaEvolve discovered programs which either match or
surpass the best known rank. Anecdotally, we encountered some difficulty when increasing
the problem size: when we run the discovered programs on sizes beyond (5, 5,5) on 1000
random seeds on evaluators with a single GPU accelerator, we often run out of memory.
Hence, extending our setup to larger matrix sizes requires further optimization.

(m,n, p) t[)f:ftel;;?x? AlphaEvolve (m,n, p) ]Ere:ftelsgr?x? AlphaEvolve (m,n, p) ]E:esftelr(gg(‘:/::? AlphaEvolve
(2,2,2) 7 [95] 7 (2,3,6) 30 [93] 30 3,4,4) 38 [93] 38
(2,2,3) 11 [93] 11 (2,3,7) 35 [93] 35 (3,4,5) 47 [26] 47
(2,2,4) 14 [93] 14 (2,3,8) 40 [93] 40 (3,4,6) 56 [48] 54
(2,2,5) 18 [93] 18 (2,3,9) 45 [93] 45 3,4,7) 66 [91] 63
(2,2,6) 21 [93] 21 (2,3,10) 50 [93] 50 (3,4,8)  75[91] 74
(2,2,7)  25[93] 25 (2,4,4) 26 [93] 26 (3,5,5)  58[91] 58
(2,2,8) 28 [93] 28 (2,4,5) 33 [42] 32 (3,5, 6) 70 [48] 68
(2,2,9) 32 [93] 32 (2,4,6) 39 [93] 39 (3,5,7) 82 [91] 80
(2,2,10)  35[93] 35 (2,4,7) 46 [93] 45 (4,4,4) 49 [95] 48
(2,2,11) 39 [93] 39 (2,4,8)  52[93] 51 (4,4,5) 62 [47] 61
(2,2,12) 42 [93] 42 (2,5,5) 40 [93] 40 (4,4,6)  73[48] 73
(2,2,13) 46 [93] 46 (2,5,6) 48 [93] 47 (4,4,7) 8793, 95] 85
(2,2,14) 49 [93] 49 (3,3,3) 23 [52] 23 (4,4, 8) 98 [95] 96
(2,2,15) 53 [93] 53 (3,3,4) 29 [93] 29 (4,4,9) 104 [92] 108
(2,2,16) 56 [93] 56 (3,3,5) 36 [93] 36 (4,5,5) 76 [26] 76
(2,3,3) 15 [93] 15 (3,3,6) 40 [93] 40 (4,5,6) 93 [48] 90
(2,3,4) 20 [93] 20 (3,3,7) 49 [93] 49 (5,5,5) 93 [72] 93
(2,3,5) 25 [93] 25 (3,3,8) 55 [93] 55 (6,6, 6) 153 [72] 156

Table 3 | Full version of Table 2, showing the best ranks obtained by AlphaEvolve for tensor
decomposition for all considered parameters. Of the 54 targets, AlphaEvolve matches the
state of the art in 38 cases, surpasses it in 14 cases (green), and falls behind in 2 cases
(red). In all cases, AlphaEvolve provides exact algorithms, using integer or half-integer entries
in the decomposition. For (3,4,7), (4,4,4), and (4,4, 8), the algorithms discovered by
AlphaEvolve use complex-valued multiplications which can be used for exact multiplication
of complex or real-valued matrices. The decompositions shown in this table can be found in
the accompanying Google Colab.

Note: Concurrent work [49] has also found a rank-90 algorithm for (4, 5, 6).

Magnified version of Figure 4 (left). In Figures 9a to 9c, we show a magnified version of
Figure 4 (left), which corresponds to the program that discovers a decomposition of rank 48
for the 3D tensor representing the operation of multiplying two 4 x 4 matrices.
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11 @@ -45,9 +45,14 Q@

2 # EVOLVE-BLOCK-START

3 def _get_optimizer(self) -> optax.GradientTransformation:

4 """Returns optimizer."""

5| - return optax.adam(self.hypers.learning_rate)

6 + return optax.adamw (

7| + self .hypers.learning _rate, weight_decay=self.hypers.weight_decay

8| + )

9

10 def _get_init_fn(self) -> jax.nn.initializers.Initializer:

11 """Returns wnitializer function. """

12| - return initializers.normal (0.0, self.hypers.init_scale, jnp.complex64)

13| + # Initialize with a smaller scale to encourage finding low-rank
solutions.

14| + # Increase scale slightly for better exploration.

15| + scale = self.hypers.init_scale

16| + return initializers.normal(0 + 1j * 0, scale * 0.2, jnp.complex64)

18/ @@ -80,6 +85,66 @@

19 # Gradient wupdates.

20 updates, opt_state = self.opt.update(grads, opt_state, decomposition)
21 decomposition = optax.apply_updates(decomposition, updates)

22| + # Add a small amount of gradient noise to help with exploration

23| + rng, g_noise_rng = jax.random.split(rng)

24| + decomposition = jax.tree_util.tree_map (

25| + lambda x: x

26| + + self.hypers.grad_noise_std * jax.random.normal(g_noise_rng, x.

shape) ,

27| + decomposition,

28| + )

29 +

30| + # Add noise to the decomposition parameters (exploration).

31 + _, noise_rng = jax.random.split(rng)

32| + noise_std = self._linear_schedule(

33| + global_step, start=self.hypers.noise_std, end=0.0

34| + )

35| + decomposition = jax.tree_util.tree_map (

36| + lambda x: x + noise_std * jax.random.normal(noise_rng, x.shape),

37| + decomposition,

38| + )

39 +

40| + # Cyclical annealing for clipping threshold.

41| + cycle_length = 2000 # Number of steps per cycle

42| + cycle_progress = (

43| + global_step % cycle_length

44 + ) / cycle_length # Normalized progress within the current cycle [0,
1)

45| +

46| + # Map cycle progress to a sinusoidal curve. Ranges from O to 1.

47| + clip_threshold_multiplier = (1 + jnp.cos(2 * jnp.pi * cycle_progress))
/ 2

48| +

49| + clip_threshold = self.hypers.clip_min + clip_threshold_multiplier * (

50| + self.hypers.clip_max - self.hypers.clip_min

51| + )

52| +

53| + def soft_clip(x, threshold):

54| + # Clipping the real and imaginary parts separately.

55/ + x_re = jnp.real(x)

56| + Xx_im = jnp.imag(x)

57| +

58| + x_re_clipped = jnp.where(

59| + x_re > threshold, threshold + (x_re - threshold) * 0.1, x_re

60| + )

61| + x_re_clipped = jnp.where(

62| + x_re_clipped < -threshold,

63| + -threshold + (x_re_clipped + threshold) * 0.1,

64| + X_re_clipped,

65| + )

Figure 9a | Magnified version of Figure 4(left), giving the program that discovers a faster
algorithm to multiply 4 x 4 matrices (1/3).
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66 +

67| + x_im_clipped = jnp.where(

68| + x_im > threshold, threshold + (x_im - threshold) * 0.1, x_im

69 + )

70| + x_im_clipped = jnp.where(

71| + x_im_clipped < -threshold,

72| + -threshold + (x_im_clipped + threshold) * 0.1,

73| + x_im_clipped,

74| + )

75| +

76| + return x_re_clipped + 1j * x_im_clipped

77, +

78| + decomposition = jax.tree_util.tree_map (

79| + lambda x: soft_clip(x, clip_threshold), decomposition

80| + )

81| +

82 return decomposition, opt_state, loss

83

84 def _loss_fn(

g5 @@ -91,13 +156,86 @@

86 ""mComputes (batched) loss on learned decomposition. """

87 # Compute reconstruction loss.

88 rec_tensor = self._decomposition_to_tensor (decomposition) # (B, N,
P)

89| +

90 + # Add noise to the target tensor (robustness).

91| + rng, noise_rng = jax.random.split(rng)

92| + target_noise = self.hypers.target_noise_std * jax.random.normal(

93| + noise_rng, self.target_tensor.shape

94| + )

95| + noisy_target_tensor = self.target_tensor + target_noise

96| +

97| + # Hallucination loss (encourages exploration by randomly replacing
values)

98| + hallucination_prob = self.hypers.hallucination_prob

99| + hallucination_scale = self.hypers.hallucination_scale

100| +

101] + def hallucinate(x, hallucination_rng):

102| + mask = jax.random.bernoulli(hallucination_rng, p=hallucination_prob)

103] + noise = hallucination_scale * jax.random.normal (

104 | + hallucination_rng, x.shape

105 + )

106| + return jnp.where(mask, noise, x)

107| +

108| + _, factor_rng = jax.random.split(rng)

109| + decomposition = jax.tree_util.tree_map (

10| + lambda x: hallucinate(x, jax.random.split(factor_rng) [0]),

111 + decomposition,

12| + )

13| +

114 # Add a batch dimension to “target_tensor  to ensure correct
broadcasting.

115 # Define the loss as the L2 recomstruction error.

116| - rec_loss = 12_loss_complex(self.target_tensor [None, rec_tensor)

117] + rec_loss = 12_loss_complex(noisy_target_tensor [None, rec_tensor)

118

119 # We must return a real-valued loss.

120| = return jnp.real(rec_loss)

121

122] + # Discretization loss (encourage entries to be multiples of 1/2 or
integer) .

123] + def dist_to_half_ints (x):

124| + x_re = jnp.real(x)

125] + x_im = jnp.imag(x)

126| + return jnp.minimum (

127| + jnp.abs(x_re - jnp.round(x_re * 2) / 2),

128| + jnp.abs(x_im - jnp.round(x_im * 2) / 2),

129| +

130| +

Figure 9b | Magnified version of Figure 4(left), giving the program that discovers a faster

algorithm to multiply 4 x 4 matrices (2/3).
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def dist_to_ints(x):
return jnp.abs(x - jnp.round(x))

discretization_loss = 0.0

for factor in decomposition:
discretization_loss += jnp.mean(dist_to_half_ints(factor))
discretization_loss += jnp.mean(dist_to_ints(factor))

discretization_loss /= (
len(decomposition) * 2
) # average across all factors and loss components

discretization_weight = self._linear_schedule(
global_step, start=0.0, end=self.hypers.discretization_weight
)

# Cosine annealing for half-integer 1loss.
cycle_length = self.config.training steps // 4 # Number of steps per
cycle
cycle_progress = (
global_step 7% cycle_length
) / cycle_length # Normalized progress within the current cycle [O,
D)
half_int_multiplier = (1 + jnp.cos(jnp.pi * cycle_progress)) / 2
half_int_multiplier =
1 - self.hypers.half_int_start
) * half_int_multiplier + self.hypers.half_int_start

total_loss = (
rec_loss
+ discretization_weight * discretization_loss *
half_int_multiplier
)

# Add penalty for large values (stability).
large_value_penalty = 0.0
for factor in decomposition:
large_value_penalty += jnp.mean(jnp.abs(factor) xx* 2)
large_value_penalty /= len(decomposition)
total_loss += self.hypers.large_value_penalty_weight x*
large_value_penalty

return jnp.real(total_loss)

172 def 12_loss_complex(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:

173
174| @@
175
176
177
178
179
180
181
182
183
184
185
186
187
188

o F o+ o+

190| +
191| +
192

193] #

"""Elementwise L2 loss for complex numbers. """

-117,6 +255,18 Q@

return hyper.zipit ([
hyper.uniform('init_scale', hyper.interval(0.2, 1.5)),
hyper.uniform('learning_rate', hyper.interval(0.05, 0.3)),
hyper.uniform('init_scale', hyper.interval (0.1, 1.0)),
hyper.uniform('learning_rate', hyper.interval(0.01, 0.2)),
hyper.uniform('discretization_weight', hyper.interval(0.0, 0.1)),
hyper .uniform('hallucination_prob', hyper.interval(0.0, 0.2)),
hyper.uniform('hallucination_scale', hyper.interval(0.0, 0.2)),
hyper.uniform('noise_std', hyper.interval(0.0, 0.01)),
hyper.uniform('target_noise_std', hyper.interval(0.0, 0.01)),
hyper .uniform('weight_decay', hyper.interval(0.00001, 0.001)),
hyper .uniform('clip_min', hyper.interval(0.0, 0.5)),
hyper.uniform('clip_max', hyper.interval(1.0, 3.0)),
hyper .uniform('large_value_penalty_weight', hyper.interval (0.0,

0.01)),
# Add noise to the gradient to aid in exploration.
hyper.uniform('grad_noise_std', hyper.interval (0.0, 0.001)),
hyper .uniform('half_int_start', hyper.interval(0.0, 1.0)),

D)

EVOLVE -BLOCK -END

Figure 9c | Magnified version of Figure 4(left), giving the program that discovers a faster
algorithm to multiply 4 x 4 matrices (3/3). Here hyper is a user-provided library for

generating hyperparameter sweeps-——————————————————
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B. Details of mathematical discoveries of AlphaEvolve

The data and verification code for all constructions reported in this section appear in the
accompanying Google Colab.

B.1. First autocorrelation inequality

For any function f : R — R, define the autoconvolution of f as

fof(o) = /R £t = x)f(x) dx.

Let C; denote the largest constant satisfying
2

1/4
max f = f(t) > Cy ( f(x) dx) @Y
~1/4

-1/2<t<1/2

for all non-negative f : R — R. This problem arises in additive combinatorics, relating to
the size of Sidon sets. It is currently known that

1.28 < C; £1.5098,

with the lower bound achieved in [17] and the upper bound achieved in [70] via a step
function construction. AlphaEvolve found a step function with 600 equally-spaced intervals
on [-1/4,1/4] that gives a slightly better upper bound C; < 1.5053.

B.2. Second autocorrelation inequality

Let C, be the smallest constant for which one has

If * Fll5 < Callf = Flllf * flloo

for all non-negative f : R — R. It is known that
0.88922 <Cy <1

with the lower bound coming from a step function construction [70]. AlphaEvolve found
a step function with 50 equally-spaced intervals on [—1/4, 1/4] that gives a slightly better
lower bound 0.8962 < C,.

B.3. Third autocorrelation inequality

Let C3 be the largest constant satisfying
2

1/4
t)| > C d
e oz o ([
for any function f : R — R. Clearly C3 < C1, since we now allow f to take positive and
negative values. There is a step function that gives the upper bound C3 < 1.45810 [104, page
75]. AlphaEvolve found a step function with 400 equally-spaced intervals on [-1/4, 1/4] that
gives a slightly better upper bound C3 < 1.4557.
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B.4. An uncertainty inequality
Given a function f : R — R, define the Fourier transform f(§) := Jiy f(x)e™27€ dx and
A(f) :==inf{r >0 : f(x) > O for all |x| > r}.
Let C4 be the largest constant for which one has
A(HA(f) = C4
for all even f with max(f(0), f(0)) < 0. It is known [33] that
0.2025 < C4 < 0.3523.

(The upper bound is stated as 0.353 in the paper, but rounding their solution to the fourth
digit gives 0.3523). We improved the upper bound to C4 < 0.3521 with a similar linear
combination as in [33], but with refined constants that were found by AlphaEvolve.

To obtain upper bounds for C4, one constructs a specific "test function” f satisfying the
conditions and calculates the value A(f)A(f) for this function, which provides an upper
bound C4 < A(f)A(f). Following the approach in [33], the test function is sought in the form
f(x) = P(x)e‘”xz, where P(x) is an even polynomial constructed as a linear combination of
Hermite polynomials Hax(x). This form is particularly useful because the Fourier transform of
H, (x)e‘”x2 is i”Hn(’;’)e‘ﬂfz. For an even polynomial P(x) = Y caxHax(x), the Fourier transform
of £(x) is (&) = T caxi*Ha(§)e ™ = (3] carHar(£))e™™ = P(£)e™™". Thus, A(f) is related
to the largest positive root of P(x), and A(f) is related to the largest positive root of P(£).
Specifically, if P(x) > O for large |x|, A(f) is the largest positive root of P(x), and A(f) is the
largest positive root of P(£), implying A(f) = A(f). The inequality becomes C4 < (A(f))2.

The method involves finding coefficients cg, c1, c2, . . . for the polynomial P(x) = coHo(x) +
c1Ha(x)+caHg(x)+. . . such that P(x) satisfies certain constraints (related to £(0) < 0, £(0) < 0
and being positive for large |x|) and minimizes the largest positive root of P(x). In our
approach, the polynomial P(x) is constructed such that P(0) = O (a condition used in the
optimization process to simplify constraints), meaning P(x) has a factor of x2. The largest
positive root rmax of P(x) is then the largest positive root of P(x)/x2. The upper bound on C4
derived from this construction is 2, /(2).

The refined constants found by AlphaEvolve for P(x) = coHp(x) + c1Ha(x) + coHg(x) are
[co,c1,c2] ~ [0.32925,-0.01159, -8.9216 x 10~°]. Using these coefficients to construct
P(x), finding its largest positive root rmax (by finding the largest positive root of P(x)/x?),
and calculating r2,,,/(2m) yields the improved upper bound C4 < 0.3521. Qualitatively our
linear combination is very similar to the one found in [33], thus empirically confirming their
hypothesis the construction is nearly optimal.

Note: After publishing the first version of this manuscript, Henry Cohn pointed out that in
a recent paper [18] they used a similar, but more refined approach to get the better constant
0.3284. By incorporating their refined approach into AlphaEvolve, we improved our reported
constant further to 0.3216. For details, we refer to the accompanying Google Colab.
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Figure 10 | Construction found by AlphaEvolve for the minimum overlap problem of Erdés.

B.5. Erd6s’ minimum overlap problem

Let Cs be the largest constant for which

1

sup f(t)g(x +t) dt > Cs
xe[-2,2] /-1

for all non-negative f,g: [-1,1] — [0,1] with f+g=1o0n [-1,1] and ff =1, where we
extend f, g by zero outside of [—1, 1]. This constant controls the asymptotics of the Minimum
Overlap Problem of [25]. The bounds

0.379005 < Cs < 0.380927

are known, where the lower bound was obtained in [107] via convex programming methods.

It is known (see [40]) that this constant is equal to the infimum, over all step functions h
on [0, 2] with values in [0, 1] and satisfying /02 h(x)dx =1 of

mgx/ h(x)(1 = h(x + k))dx.

The upper bound to the Erdés minimum overlap problem was then obtained by using this
result, in [40] by a step function construction. The step function depicted in Figure 10 does
ever so slightly better than the previous bound, giving the upper bound of Cs < 0.380924.

B.6. Sums and differences of finite sets

Let Cg be the largest constant for which the following statement holds: there exist arbitrarily
large finite sets of integers A, B with |A+ B| < |A| and |A — B| > |A + B|%. (Here A+ B =
{a+b:a€AbeBtand A-B={a-b:ac€A,be B} denote the sumset and difference set,
respectively. The notation X <« Y means that X < CY for some constant C independent of the
sets A, B (for sufficiently large sets A, B). The notation X > Y means that X > C’Y for some
positive constant ¢’ independent of the sets A, B (for sufficiently large sets A, B).)

1.14465 < Cg < g; (2)
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Figure 11 | Constructions of the packing problems found by AlphaEvolve. Left: Packing 11
unit hexagons into a regular hexagon of side length 3.931. Right: Packing 12 unit hexagons
into a regular hexagon of side length 3.942.

see [39, Corollary 3] for the upper bound and [39, Theorem 1] for the lower bound. The
main tool for the lower bound is the following result of Gyarmati et al. [39]:

[U-U]

[U+U]
Ce > 1
6= 17 log(2 max(U) + 1)

log

(3)

for any finite set U of non-negative integers containing zero satisfying |U —U| < 2 max(U) + 1.
AlphaEvolve found a set U; of size 2003 improving the lower bound to 1.1479 < Cg, and
another set U; of size 54265 further improving the lower bound to 1.1584 < Cg.

B.7. Packing unit regular hexagons inside a regular hexagon

Consider the problem of packing n disjoint regular hexagons with unit side length into a
larger regular hexagon, minimizing the side length of the outer hexagon. For n = 11 and
n = 12, the best known constructions use outer hexagons of side lengths 3.943 and 4.0,
respectively [29]. AlphaEvolve found packing arrangements that improve these bounds to
3.931 and 3.942, respectively. These arrangements are shown in Figure 11.

B.8. Minimizing the ratio of maximum to minimum distance

For any n and d, the goal of this problem is to find n points in the d-dimensional space so as
to minimize the ratio between the maximum and minimum pairwise distances. AlphaEvolve
found two new constructions improving the best known bounds. The found constructions
are shown in Figure 12.

In 2 dimensions, AlphaEvolve found 16 points with ratio ~ V12.889266112, improving
the best known bound of v12.890 [29]. (In this reference, instead of the ratio itself, the
square of the ratio is reported, and we use the same convention.)
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Figure 12 | Left: 16 points in 2 dimensions achieving a ratio of maximum distance to
minimum distance of ~ V12.889266112. Right: 14 points in 3 dimensions achieving a ratio
of ~ V4.165849767. Both constructions improve the best known bounds.

In 3 dimensions, AlphaEvolve found 14 points with ratio » V4.165849767, improving the
best known bound of V4.168 [29].

B.9. The Heilbronn problem for triangles

The goal of this problem is to find n points on or inside a triangle with unit area so that the
area of the smallest triangle formed by these points is maximized. For n = 11, the SOTA was
0.036 [29], and AlphaEvolve found a construction with minimum area larger than 0.0365,
which is shown in Figure 13 (left).

B.10. The Heilbronn problem for convex regions

The goal of this problem is to find n points on or inside a convex region with unit area so that
the area of the smallest triangle formed by these points is maximized. AlphaEvolve improved
two of the best known bounds.

For n = 13, the SOTA was 0.0306 [29], and AlphaEvolve improved it to 0.0309 (see
Figure 13 (middle)). For n = 14, the SOTA was 0.0277 [29] and AlphaEvolve improved it to
0.0278 (see Figure 13 (right)).

B.11. Kissing number in dimension 11

The kissing problem asks how many disjoint unit spheres can be packed tangent to a given
unit sphere. The maximum such number in d dimensions is called the d-dimensional kissing
number [8]. For d = 11, the best known lower bound was 592 [31] and AlphaEvolve improved
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Figure 13 | New constructions found by AlphaEvolve improving the best known bounds on
two variants of the Heilbronn problem. Left: 11 points in a unit-area triangle with all formed
triangles having area > 0.0365. Middle: 13 points inside a convex region with unit area with
all formed triangles having area > 0.0309. Right: 14 points inside a unit convex region with
minimum area > 0.0278.

this to 593. To prove the lower bound of 593 for the kissing number in dimension 11,
AlphaEvolve found 593 many 11-dimensional non-zero points with integral coordinates such
that the maximum norm of these points is smaller than their minimum pairwise distance. By
the following lemma, this implies the kissing number in dimension 11 is at least 593.

Lemma 1. Let C ¢ R? be a set of points satisfying 0 ¢ C and
min{||x —y|| : x # y € C} > max{||x|| : x € C}.

Then unit spheres centred at {” jiXE€ C} form a valid kissing configuration in dimension d. In
particular, the kissing number in dimension d is at least |C].

Proof. For any x # y € C, the inequality ||x — y||? > max{||x||?, ||ly||*} implies

20, y) < IIxll® + lly1? = max{[lx|1%, lylI*} = min{[lx|1%, lyI1*} < [l - 1yl 4

where the last inequality holds because the minimum of two positive numbers is less than or

equal to their geometric mean. The points { ||2XI| x € C} have norm 2, so unit spheres centred

at them are tangent to a unit sphere centred at the origin. The last step is to show that these
spheres do not overlap. This is equivalent to showing, for all x # y € C, that

||x|| ¥l H

After simplifying, this is equivalent to 2{x, y) < ||x|| - ||¥||, which we have proved in (4). Thus
unit spheres centred at {” TiXE€ C} form a valid kissing configuration in dimension d, as
required. O

B.12. Packing circles inside a unit square to maximize sum of radii

Given a positive integer n, the problem is to pack n disjoint circles inside a unit square so as
to maximize the sum of their radii. AlphaEvolve found two new constructions improving the
state of the art [29].
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For n = 26, the SOTA was 2.634, and AlphaEvolve improved it to 2.635; see Figure 14
(left). For n = 32, the SOTA was 2.936, and AlphaEvolve improved it to 2.937; see Figure 14
(middle).

B.13. Packing circles inside a rectangle of perimeter 4 to maximize sum of radii

Given a positive integer n, the problem is to pack n disjoint circles inside a rectangle of
perimeter 4 so as to maximize the sum of their radii. AlphaEvolve found a new construction
for n = 21, improving the state of the art from 2.364 [29] to 2.3658; see Figure 14 (right).

Figure 14 | New constructions found by AlphaEvolve improving the best known bounds on
packing circles to maximize their sum of radii. Left: 26 circles in a unit square with sum
of radii > 2.635. Middle: 32 circles in a unit square with sum of radii > 2.937. Right: 21
circles in a rectangle with perimeter 4, with sum of radii > 2.365.
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